
iCity Project CIP Project Number: 297363

D3.7 Evaluation Metrics Page 1

"Linked Open Apps Ecosystem to open up innovation in smart cities"

Project Number: 297363

 Deliverable: Evaluation Metrics

 Version: 1.5

 Delivery date: 08/10/2013

 Dissemination level: PU

 Author: Johan Verelst (CISCO)

 Frank Van Steenwinkel (CISCO)

Summary:

This report presented a set of metrics and indicators to monitor the quality and effectiveness

of the proposed architecture in real deployment scenarios

This report is a guideline to develop the iCity TEST Plan.

Metrics included are essential, but not limited to the ones presented.

iCity Project CIP Project Number: 297363

D3.7 Evaluation Metrics Page 2

TABLE OF CONTENTS

1. Introduction ...3

2. Security Aspects ...4

2.1 API Management and Security .. 4
2.2 Communication between the iCity Gateway and the back end server 4
2.3 Authenticating an API .. 4

3. Operational and Management Capabilities ...5

3.1 API Portal .. 5
3.2 The Dashboard .. 5
3.3 Functionality by User Role ... 5

3.3.1 Administrative Roles (Internal Roles): ... 6
3.3.2 Developer Roles (External Roles) ... 7

3.4 Tasks Performed by User Role .. 7

4. Reporting ...9

4.1 Accessing Reports ... 9
4.2 Developer Reports ... 9
4.3 Publisher Reports (Administrators) .. 9
4.4 Usage Reports (Administrators) ... 9
4.5 Ranked Reports (Administrators) ... 9

5. Performance Testing .. 11

5.1 Key Metrics .. 11
5.1.1 Requests per Second .. 11
5.1.2 Bytes per Second .. 11
5.1.3 Latency ... 11
5.1.4 Maximum Concurrency ... 12
5.1.5 Number of users supported ... 12

5.2 Concurrency, Number of Users and Latency ... 12
5.2.1 Planning .. 12
5.2.2 The User Base .. 12
5.2.3 Application Design .. 12
5.2.4 Service Latency... 13
5.2.5 Requests Per Second ... 13
5.2.6 Concurrency Calculations ... 13
5.2.7 Back End Processing .. 15
5.2.8 Performance Optimization ... 15

iCity Project CIP Project Number: 297363

D3.7 Evaluation Metrics Page 3

1. Introduction

This report presents a set of metrics and indicators to monitor the quality and effectiveness of

the proposed architecture for the iCity Platform in real deployment scenarios.

The following areas are addressed:

 Security

o XML-based Web services are becoming a more pervasive foundation
technology for integrating applications and exchanging data in Service
Oriented Architectures (SOAs). Like all new technologies, however, XML-
based Web services also present new security challenges in the form of XML
data structures, granular application calls, input data, or executable
attachments, all of which can be maliciously constructed to damage or expose
a receiving application. XML-based Web services compound the number of
vulnerabilities by providing access to application APIs and target applications.
The distributed, peer-to-peer nature of Web services also introduces bilateral
threats and vulnerabilities that can be passed through multiple application
hops. A complete threat-protection framework needs to address three key
functions: Prevention, Protection, and Screening.

 Operations and management capabilities

o Different user roles need to be identified on the iCity Platform. Several

Administrative account levels need to be able to deal with areas as user

management, branding the portal, publishing API’s. This will allow developers

to smoothly build their applications.

 Reporting

o Developers should have the ability to understand what their user experience is
like, to track API performance and to ensure SLAs are being adhered to.

o Administrators should be able to track the performance and usage of their
APIs and applications built against these APIs, directly from within the Portal.

 Performance testing metrics

o Key metrics need to be identified as the most important statistics that are
reported on.

iCity Project CIP Project Number: 297363

D3.7 Evaluation Metrics Page 4

2. Security Aspects

2.1 API Management and Security

Publishing APIs online makes organizations subject to the growing threat of cyber-attacks.
While network firewalls can provide some measure of protection from standard, Web-based
attacks, they cannot address API threats because they lack the ability to deal with the
messaging protocols used by APIs today, such as XML and JSON.

Managing APIs also presents a number of problems, primarily around creating, maintaining
and updating different versions of APIs for different customers, as well as granting third
parties the ability to aggregate and orchestrate across APIs to create new services and richer
responses to queries. APIs are like any other piece of code that is created; they are
developed, tested, deployed and revised as needed. However, moving Web APIs between
environments or deploying new versions of APIs can expose hidden dependency issues or
break your customers’ existing integrations, causing downtime or even SLA violations. The
iCity Platform should protect against attack and downtime.

2.2 Communication between the iCity Gateway and the back end

server

The communication between the Gateway and the back end server needs to be secured.

Authentication and Authorization of API access should be done only by the Gateway (with
developer management provided through the API portal). Protecting the API is the job of the
Gateway, not of the back end server.

To avoid many back end system security reconfigurations, and to centralize the security
rules, the Gateway (not individual developers) authenticates itself against the back end
system.

Fixed 'username/password' basic authentication over HTTPS is probably the most simple
method and might be acceptable at the initial stage. In other words we would assign the
Gateway a username/password with which it authenticates itself against the back end server.
Since basic authentication itself is not encrypted (only obfuscated through base64 encoding),
it is strongly advised to use it over HTTPS. In that way at least the password is protected
during transport.

2.3 Authenticating an API

The iCity Platform must have a utility to enable developers to discover APIs interactively.

By making choices between APIs’ valid resources and methods, and then submitting queries
and viewing responses, developers can, amongst other things, gain a better understanding
of how the APIs work.

In order for a request to be executed correctly, an API must be authenticated on the iCity
Gateway.

Different authentication methods should be made available, for example:

 API Key;

 HTTP Basic;

 OAuth 1.0;

 OAuth 2.0.

iCity Project CIP Project Number: 297363

D3.7 Evaluation Metrics Page 5

3. Operational and Management Capabilities

3.1 API Portal

The iCity API Portal enables cities to upload APIs, manage, and report on third party
developers and the applications they build using the APIs.

The iCity Platform should contain these two main functional areas:

 API Portal: This area is used to publish APIs, manage developers, and perform
analytics/reporting.

 CMS (Content Management System): This area is used to set up accounts, work with
CSS files, configure system messages, and create Web content.

Administrator Account:

The iCity API Portal should have a predefined Administrator account that can be used to log
in and create additional profiles via the content management system.

Changing a Password:

 Both developers and administrators should be able to change passwords.

o Users can change their own passwords on the dashboard of the iCity API
Portal.

o Administrators can also use the CMS to change users' passwords, including
their own.

 A maximum login attempt value should be provided.

 The time accounts are locked should be configurable in minutes, hours, days.

3.2 The Dashboard

 The iCity Platform should have a Dashboard; a primary interface for developers and
several user roles pre-configured in the system: example: API Owners, Business
Managers, and Account Managers.

 A navigation sidebar displays different links depending on the role of the logged in
user; however, the Dashboard can be personalized by each individual user.

 Once you log in, the Dashboard page should be displayed by default.

 The iCity API Portal should provide the ability to create forums. Forums facilitate
communication among all users in the API Portal. Forums should have different levels
of access. Each level has permission to view different areas of the forum as well as
perform different tasks.

3.3 Functionality by User Role

 The iCity API Portal should be delivered with several user roles pre-configured in the
system.

 These roles should be defined as being either internal or external.

 Internal roles are created on the CMS and internal to business of implementing the
portal, whereas external roles are accounts that must be invited to the system.

 Each user role should see different levels of the navigation to match their
functionality.

iCity Project CIP Project Number: 297363

D3.7 Evaluation Metrics Page 6

3.3.1 Administrative Roles (Internal Roles):

The following “internal” user roles should be preconfigured in the iCity API Portal:

 Administrator:

o The super user with access to all functionality for all the roles listed below:

 WebAdmin:

o The person responsible for setting up the API Portal, including:

 Branding the API Portal

 Creating and publishing the home page, documentation, and other
content

 API Owner:

o The person tasked with defining, publishing and monetizing, or promoting the
APIs. On the iCity API Portal, this person will be responsible for:

 Defining API Plans (i.e., service levels) associated with each API

 Publishing the APIs for use by developers

 Measuring the effectiveness and usage of their APIs using the
Analytics and Reporting feature

The API Owner can also:

o Manage organizations

o Edit, enable, or disable applications

o Email Organization Administrators

 Business Manager:

o The person tasked with managing the developers who sign up to use the
APIs. On the iCity API Portal, the Business Manager will be responsible for
the following tasks:

 Defining Account Plans (i.e., technical support levels) that can be
assigned to each developer

 Assigning Account Managers to developers

 Measuring the rate at which developers sign up

 Ensuring that SLAs (Service Level Agreements) are being adhered to,
by using the Analytics and Reporting feature

The Business Manager can also:

o Process requests (such as application requests, API Plans, and Account
registrations)

o Manage organizations (the same as API Owners)

o Edit email templates and registration disclaimers

 Account Manager:

o The person tasked with assisting the Business Manager with the developers.
On the iCity API Portal, this person will be responsible for the following tasks:

 Approving API and Account plan requests

iCity Project CIP Project Number: 297363

D3.7 Evaluation Metrics Page 7

 Managing the developer’s account on a daily basis

 Managing organizations (similar to an API Owner)

3.3.2 Developer Roles (External Roles)

The following “external” user roles should be preconfigured in the iCity API Portal:

 OrgAdmin:

o OrgAdmin is the owner of an organization. This is typically a third-party user
that signs up for an account in the iCity API Portal using the Registration
Form. This person is responsible for managing his or her own organization
and is usually the only developer or the first one to register for the
organization.

 Developer:

o A user that has been invited to join the iCity API Portal by an organization
owner (OrgAdmin). These users are enrolled under the OrgAdmin's account.
Developers are responsible for creating and managing new applications.

3.4 Tasks Performed by User Role

The following table summarizes the tasks each user should be able to perform

 API

Owner

Business

Manager

Account

Manager

Developer

Web

Admin

Administrators

View APIs X X

Publish APIs X X

Use or

Designate

Private APIs

X X X X

Deprecate

APIs

X X X X

Add/Edit API

EULAs

X X

View and

Message

OrgAdmin

X X

Create and

Manage

Account Plans

 X X

Request

Account Plan

Change

 X

Manage

Account

Managers

 X X

Manage

Organizations

X

(for

X X

(only

X

(if

 X

iCity Project CIP Project Number: 297363

D3.7 Evaluation Metrics Page 8

(Access varies

by user role)

APIs) (all orgs) assigned

orgs)

OrgAdmin) (all orgs)

Manage or

Work with

Applications

(Access varies

by user role)

X X X X X

iCity Project CIP Project Number: 297363

D3.7 Evaluation Metrics Page 9

4. Reporting

4.1 Accessing Reports

 Administrators should be able to generate reports on APIs and organizations.

 Administrators should be able to access ranked reports.

 Developers should be able to generate reports on their applications.

 Developers with access to reports should be able to view usage reports.

4.2 Developer Reports

Developers should have access to both Application reports and API reports.

Usage and Latency reporting is recommended.

The Application reports should allow developers to:

 View the usage graph for an application

 View the latency for an application

The API reports should allow developers to:

 View the usage for an API

 View the latency for an API

4.3 Publisher Reports (Administrators)

Publishers should have access to both Application reports and API reports.

Usage and Latency is not only important for developers, but for publishers too as this will
indicate somehow how end users will experience the application.

The Application reports should allow publishers to:

 View the usage for an application

 View the latency for an application

The API reports should allow publishers to:

 View the usage for an API

 View the latency for an API

4.4 Usage Reports (Administrators)

The usage report should provide a high level view of the Account Plan usage by
organization.

4.5 Ranked Reports (Administrators)

A Ranked Reports page should be available to all internal user roles that have access to
Administrators, Business Managers, API Owners, and Account Managers.

This page provides a high level view of API usage or latency by application or organization.

 Top Applications:
o View the applications that have the most hits against APIs. These are going to

be the most popular applications.

 Highest Latency:
o View the applications with the highest latency spikes over the time period

iCity Project CIP Project Number: 297363

D3.7 Evaluation Metrics Page 10

chosen. The information here can help to perform troubleshooting.

 Top Organizations:
o View the organizations that have the most hits against APIs. These are going

to be the most valuable organizations.

 Inactive Organizations:
o View those organizations that have generated no traffic or are no longer active

on the Portal. These are accounts which might be purged.

 API

Owner

Business

Manager

Account

Manager

Developer

Web

Admin

Administrators

Manage or Work

with Applications

(Access depends

on user type)

X X X X X

Approve/reject

New Accounts

 X X

Approve/reject

API Plan

Requests

 X X X

Assign Private

API Access (to

Developers)

 X X

Register for an

account

 X

Add new

applications

 X X X X

Access the Site

Settings

 X

(email

Templates

and

Registration

only)

 X X

Access the

Content

Management

System (CMS)

X X X

iCity Project CIP Project Number: 297363

D3.7 Evaluation Metrics Page 11

5. Performance Testing

Benchmarking web services usually involved simulating lots of users and sending lots of
messages to simulate a heavy production situation.

Equally important is the desire to understand what metrics are available and the relationship
between them.

5.1 Key Metrics

5.1.1 Requests per Second

In terms of overall statistics, reporting systems often cover the number of requests served in
a given month, or the worst case burst period request traffic. This implies metrics based on
requests per unit of time and usually leads to throughput being regarded in terms of the
number of requests per second.

Often requests per second are limited by networking issues:

 Network latency for very small messages can be a significant part of the whole
request time overhead. This limits the number of new requests that can be accepted
by the application stack in a given time period.

 Network bandwidth for large messages can limit requests per second as no more
traffic can be put on the network interface. Modern hardware can easily swamp a
Gigabit network with large messages.

 Some operations are time consuming and necessarily synchronous, like certain kinds
of Lightweight Directory Access Protocol (LDAP) lookups, database queries, etc.
Often, the only way to optimize this is to redesign the workflow to cache, or reduce
these time wait cycles.

5.1.2 Bytes per Second

Some proposed benchmarks are based on measuring throughput in terms of bytes per
second. For a variety of reasons these prove to be difficult to plan well. To accurately model
a proposed application it is necessary to have knowledge of:

 Average incoming Message size

 Average back end Response time

 Maximum concurrency of back end systems

 Bottlenecks at Authorization and Authentication systems

5.1.3 Latency

Measuring the total elapsed time it takes a request to be serviced is critical in certain types of
applications.

This has its own list of criteria that need to be taken into account:

 Usability of user interfaces is often enhanced with a faster response times.

 Latency becomes a performance benchmark especially in chatty applications that use
a large number of requests to service a single user action.

 Technical people are often tasked with measuring this and the iCity Platform
dashboard User Interface (UI) should feature instrumentation to show the separate
components of request latency.

iCity Project CIP Project Number: 297363

D3.7 Evaluation Metrics Page 12

 It is important to note that latency and concurrency are often in opposition when
building test cases.

 External decision points like LDAP, Single Sign On (SSO) systems often contribute
latency to a whole application.

5.1.4 Maximum Concurrency

Concurrency is defined as the number of requests being simultaneously processed at a
given time. There are several states a request can be in:

 The initial TCP connection phases,

 Request message processing in the Gateway,

 Request servicing by a back end system, and

 The sending of the response back to the originating system.

Once a message reply is sent back to the requesting system, the Gateway resources are
freed to process other requests.

Concurrency is usually the most misunderstood statistic in any performance discussion. This
is covered in detail in the next section.

5.1.5 Number of users supported

This is rarely encountered. Mostly it is used interchangeably with maximum concurrency,
though they do mean quite different things.

Often it means the concept of application and application firewall are somewhat intertwined.

In the next section a way to interrelate users, concurrency and latency will be described.

5.2 Concurrency, Number of Users and Latency

5.2.1 Planning

Planning for a good user experience and sizing the iCity Platform solution is a complex
undertaking as there are different parameters as inputs and many ways of looking at the
problem. Doing the calculation here is important to understand the issues.

One of the most common assumptions in sizing is that large concurrency is required to
support a large number of simultaneous users interacting with the application. The usual
mandate is to support your user base, and to plan to accommodate a worst case situation, so
let’s see what real concurrency is needed by a large number of users.

5.2.2 The User Base

The following analysis is based on 20,000 users accessing a single application concurrently.

It is assumed that the application is web based, but has a core component that is sourced
from some services component, i.e. the portal model. Most of the HTTP requests for a given
page are things like images, CSS and other small static files and are serviced by web
servers, not application servers, and so are not considered in this analysis. The calculations
presented here are also applicable for fat client GUI-style applications because the same
kind of technology choices around minimizing server round trips for heavyweight services
also hold true for GUI applications.

5.2.3 Application Design

Designing an application to perform live queries for small pieces of user interface content is
not good practice whether it is a client/server, a web app, or fat client. Waiting for even local
network latency to fill in the content of UI elements like drop-down lists gives extra waiting

iCity Project CIP Project Number: 297363

D3.7 Evaluation Metrics Page 13

states during the displaying of the content. This make the UI appear unresponsive, and
makes a large client base roll-out impractical for even unsecured applications, just from the
sheer volume of the requests.

We are making a best practice assumption that services applications are designed to make
one or two larger critical path requests as the core of the application service. We assume
that most pages have a single type of information the user wants to view, but some will be
more complex. We assume an average of 1.25 service requests per page view, reflecting a
mix of page types.

5.2.4 Service Latency

Static content requests that require no processing should be sub millisecond in latency, but
actual service requests are normally in the 10 milliseconds to 5000 milliseconds range on the
back end. Later we describe how the service request latency is a hugely important number in
determining required concurrency.

So far we therefore have 20,000 users, with 1.25 service requests per page, and each of
those request taking from 10 to 5000 milliseconds to process.

5.2.5 Requests Per Second

Next we need to determine how many requests those users will generate.

Given the way that people read and use applications, the bare minimum time it takes to
recognize a fully rendered page or UI, find the content he/she is looking for, then choose a
navigation element to initiate another request is likely to be 3 to 5 seconds. That is the bare
minimum. The time that users are not generating new requests to back end services is
called the page dwell time.

Dwell time on a page of something like traffic information, a purchase order or a line of
business task like a shipping request is going to be longer than 5 seconds.

So, given a page dwell time between 5 and 60 seconds, over the course of an hour, 20,000
users are going to generate between 0.75 and 18 million requests, or between 208 and
5,000 requests per second. This is a reasonable number for the requests per second
statistic, but leads us into the discussion of needed concurrency and how latency is by far the
critical statistic.

5.2.6 Concurrency Calculations

The calculation for the required concurrency is as follows: 20,000 users generating 1.25
service requests per page every 5 seconds would generate, on average 20K * 1.25 * (5/60)
or 30,000 requests per minute or 5,000 requests per second. We need to handle 5,000
requests every second and the service takes 10 milliseconds to handle a single request. In
one second there are 100 periods of 10 milliseconds, so in each of these 10 millisecond
periods we need to retire 5,000/100 or 50 simultaneous requests.

Required Concurrency=Requests per second / (1/Latency in seconds)

iCity Project CIP Project Number: 297363

D3.7 Evaluation Metrics Page 14

In our first example 5,000/(1/0.010) = 5,000/100 = 50. Of very important emphasis here is the
effect of latency on concurrency. Assuming a lower page dwell time of only 5 seconds, and
starting from 10 to 5,000 milliseconds service latency, the concurrency requirement jumps
from only 50 simultaneous requests per second required to service 20,000 users to 16,667.
At this point the performance of the system will seriously deteriorate, because at 1.25
requests per page, it would take an average of 7.5 seconds just to make the data available to
render the page.

There are a large number of simplifications in this calculation but it does demonstrate that
characterizing the load and the user experience has a huge impact on a prediction of
required concurrency. How long will users wait for data before they decide the system is too
slow?

Requests per user action also has a direct relationship to concurrency. Less clear is the
effect of page dwell time. These worst case numbers reflect a given user, on average, asking
for new content every 5 seconds. That may be considered as fast for most pages, unless the
system has been built with lots of paging through content. Then, if what they need is on page
3, they may not wait 5 seconds to ask for new content. This can create a worst case scenario
unintentionally as user acceptance testing may not accurately reflect how often people
generate new requests, because the environments often are not loaded with enough data to
require paging through content.

Latency Is Key

Sequence Diagram

Latency is inversely proportionate to needed concurrency

In the discussion of concurrency we described an application analysis with total application
service latency as a huge determining factor in concurrency requirements. There are many
contributors to latency, and the Gateway function needs to be monitored in that respect.

The above sequence diagram describes the processing steps and messages, internal lookup
requests and points of latency when servicing a single inbound request at the Gateway

iCity Project CIP Project Number: 297363

D3.7 Evaluation Metrics Page 15

function.

Some systems specifically report the time between steps 1 and 12 as the front end response
time and the time between 8 and 10 as the back end response time.

Experience has shown us that those are the two most important items to report when
measuring latency.

Of note in this example is that the maximum front end response time or more accurately, the
latency experienced by the end user was only 132 milliseconds even though the back end
response time was 100 milliseconds.

5.2.7 Back End Processing

In almost all scenarios we have encountered in the field, the back end processing time

produces the bulk of the latency. This is beyond our control, but the iCity Platform can

help by providing: an efficient requester subsystem, controls on concurrency and connection

caching for SSL.

There are some components of overall latency that we end up classifying as "our local

processing overhead". One of them, LDAP Lookup Time is minimized somewhat by our

authentication cache, but still can be a limiting factor. This call to LDAP has similar analogies

in Single Sign On authorizations and other methods of external decision point references.

This latency is not separately described in our UI, and may in some cases result in the

Gateway itself suspected as being a source of latency.

Also of particular impact is cryptography. Cryptographic operations can incur latency and/or

heavy CPU usage depending on the use of internal Hierarchical Storage Management

(HSM), internal software cryptography or external HSM solutions. We have very efficient

cryptographic capabilities, but there is an associated mathematical complexity associated

with public key operations that no system can avoid.

5.2.8 Performance Optimization

With back end latency so dominating normal performance testing, the iCity Platform should
be optimized to minimize delay in back end processing.

Small messages have given typical processing rates of 20,000 requests per second, for
latency in the sub-millisecond range, so in most cases, the Gateway is not contributing any
significant amount to latency.

Some policy elements have latency associated and can be avoided in latency sensitive
applications; Auditing is the obvious one as it has dependencies associated with
synchronously waiting for the auditing subsystem to write to hard disk.

